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A characteuistic analysis i s  presented f o r  the equations of e l ~ t i e i w  

in Cartesian coordinates. The characteristic slope equations are derived, 

and it is  verified tha t  two types of waves exis t .  The compatibi.li"cy equa- 

tions are developed in relat ion t o  the direction cosines of a spheric& 

coordinate system. A brief  discussion of the nethod of analysis i s  irreluded, 



INTRODUCTION 

The application of the theory of chaxwteristics and subseguezlt n m r i -  

cal solution of the ciharacrterlestic equations i s  increasing in p o p a m i w  as a 

technique fo r  s~lving.wave propagation problems. The sophisti~~3.ted develop- 

ment of modem digital computers is responsible f o r  the incxsase in =sea& 

effor t  t o  develop and extend fhe technique t o  mre complicated p r o b l m ,  

This report deals with the development of a characteristic andys i s  for the 

three dimensional dynamic e las t i c i ty  problem. 

THE DYNAMIC ELASTICITY PROBLEM 

The equations of motion fo r  a l inear ,  elastic, isotropic and horngenesus 

medium in Cart.esian coordinates are, 

where 

X,  y ,  and z = Cartesian coordinates 

o , o and o. the norsndl stresses in the yz, xz, and 
X Y  z 

xy planes, respectively 

' , ,r , and T = the shear stresses i n  the xy, yz, and 
xy YZ xz 

xz planes, respectively 

p = density 



V V , and V = velocities i n  the x-, y-, and z-dixections, ~specjCiveLy 
x y  Y z 

t = the t h  d h n s i o n .  

The s t ress-d isplacmnt  relations can be written as 

and 

where 

and 

u , u and u = displacemnts in the x-, y-, and z-directions mspectively, 
x y Y  z 
In the theory of cha~*acteu?istics, it is convenient t o  treat first-order 

pa r t i a l  differential. equations; therefore, Eqs, 4 through 9 w i l l  be diffemn- 

t i a t ed  with respect t o  the t o  yield 



and 

Equations 1 through 3 and 11 through 1 6  make up a s e t  of nine l h e w  

first-order pa r t i a l  differential  equations which govern the three d h n -  

sional dynamic elasticity problem, 

ANALYSIS USING THE THEORY OF CHARACTERISTICS 

The analysis used hexein i s  similar t o  tha t  used by Sauerteh (1) 

and Madden (2)  and w i l l  be brief ly outlined, The nine governing equatioi~s 

can be represented i n  a convenient form using the index notation as foLLsws, 

where B o  represents the dependent variables; xk represents the independelat 
3 

variables and the aijk are  constants. The characteristic (slope) equa- 

t ions fo r  Eq. (17) car! be developed by changing the independent vmi&l-es 

from xk t o  some arbi trary coordinate system, say n , n g  , and n That 

Ass* tha t  values of all dependent variables and t he i r  derivatives 

with respect t o  n 2  and rt3 are specified on a swface n l  = constant, these 

transformed par t i a l  differential  equations would be expected t o  yield the 



derivatives wfth respect t o  n , ,  i f  they exis t .  These derivatives axe - 

a B o  a n .  
J a B j  ann 2 -  - -a*. -- 

ai jk a n ,  ax l ~ k  an, axk 

where n - 2 , 3 ,  

To determine the characteristic equations it is desirable t o  deteua- 

mine the conditions under which the derivatives normal t o  n I  do not ex i s t ,  

tha t  is, the normdl derivatives t o  the surface, n l  = a constant, iure dis- 

continuouso These discontinuity surfaces which have been mentioned a-c 

the beginning of t h i s  chapter are also called characteristic surfaces. 

The requirement f o r  discontinuity in the derivatives with respect to ri, 

is  then the vanishing of the determinant of the coefficients of the 

derivatives with respect t o  n l  in Eqs. (191, o r  

The nine governing equations (1) through (3 )  and (11) through (161, 

det 

a f t e r  tmnsformation , may be w i t t e n  in the form of Eq . ( 20 ) as follows, 

r,, 0  0  n ,  n ,  0  -PTY 0  0  
X Y z t 
0  n ,  0 n ,  0  n ,  0  -PO 0  

Y X z )t 
0  0  n ,  0  n ,  n~ 0  0  -Prl ,  

z x Y t 

rl , 0  o O 0  0  -Ah3 -ACny - A h y  
"t X Y z 

0  n ,  0  o o O -ACny -ABn, -ACn, 
t X Y z 

0  0  q, o O 0  - A h ,  - A h y  
t X Y z 

a n  .) 
.L 

a i j k  
k 

O O O O O n ,  A A 
t 

0  -pz -py 

= 0  



where the comma indicates parkial differentiation with respect t o  the 

variable following the comma. Also, f o r  convenience the subscript I 

has been of i t ted  fo r  the variable n. Expanding Eq. ( 2 1 )  gives the 

following 

Equations ( 2 3 )  and (24) show tha t  t h i s  three-spatial d h n s i a n d  

problem involves two kinds of waves, n m l y ,  a longitudinal and a 

shear wave. Letting cL and cs represent the longitudinal and shear 

wave velocities,  respectively, it follows tha t  

The extra factor  n , in Eq. (25)  indicates the part icle  path which 
t 

is  a characteristic surface with zero velocity. By expressing Eqs . C 2 3 ) 

and (24) as 

where 

c = c  o r c  
L s 



and introdu.chg a new parameter J1, the characteristic slope eqyation.~ 

- - aF dy -, - - 
d@ a n ,  Y - -2nry 

dz - aF - _ - -  
a* a n ,  - - 2 b Z  

2 

Elirmfnating the parameter 3, gives 

dz n ) ~  - -c2 - - - s c  ,z 
d t  

,t 2 2 n ,  + n ,  + T I ,  2 

X Y Z 

Equations (331, (341, and (35) can be reduced t o  a simple f o m  by w b g  

the direction cosines between the normal t o  the surface n = c o n s t a t  

and the x-, y-, and z-axes as 

I '  ,X 

cos (n,x) = 
n , 2  + n , 2  + n ,  2 

X Y Z 

COS (rl,z) = n , z  
2 2 T I ,  + n ,  + n ,  2 
X Y Z 



Equations (36) can be written in terms of spherical coordinates 

8 and + according t o  Figure 1 as 

Cos (?l,x) = Sin 8 Cos 4 

Cos (l-,,y) = Sin 8 Sin 4 

cos ( Q , z )  = cos e 

Substituting in to  Eqs. (331, (341, and (35) yields 

dx - - 
d t  - f- c Sin 8 Cos 4 

In Eqs. (38) only the positive sign need be considered since the negati~pe 

sign may be ob~ained by changing the reference f o r  0 and 4 .  T h e ~ f o ~  ?, 

the final f o m  of chaac te r i s t i c  slope equations is  

- dy - sin 0 sin m dt - 

In Eqs. (391, a given value f o r  8 and Q, (0+21~) defines one o f t b e  

characrkeristic directions at a point. These characteristics axe t e ~ m d  

"Bichaacteristics" . Considering the entixe range of 8 and 4 C O+2n 1 , 
Eqs. (39) describe a general sphere in space, namely, a "sharacteristic 

sphere". The f d l y  of bichamcteristics are the generatops of the 

sphere. 

The compa-tibility equation comsponding t o  the bichayt3cteristies 

given by Eqs. (39) i s  obtained by combining the t r an s fomd  equations 

in a manner such tha t  the indeterminable derivatives with respect to 

rl do not appear. Multiplying the transformed equations by weighthg 



factors h , h 2 ,  . . .. and h respectively and sumring w i l l  yield 
1 9 

such a relation. Relations between the X's are found by equating 

t o  zero the coefficients with respect t o  n in the transformed equa- 

t ions. The derivatives can be m i t t e n  in the form: 

Only eight of these homogeneous equations are required t o  find the 

following relations 

X2 = tan $I h l  

A ,  = PA], 

A 4  = + Sin e Cos 4 
C 1 

X 5  = f_  Sin 0 Sin $ tan $I 
C 1 

A, = + P Cos e 
C 1 

- Sin 0 h 7 - f -  C (Sin $I + Cos $I tan $ 1 ~ ~  

+ Cos 8 + P Sin e Cos $ X8 = - 
C 2 



and 

- + Cos 0 tan 4 + P s in  9 s in  4 
A 9  - ' 

C 1 

where 

Thus the compatibility equations can be obtained f r o m  the sum of the 

weighted equations (1) through ( 3 )  and (11) through (16 ) as follows 

2 
+ Sin 8 Cos ${u - P C ~ V ~ , ~  - -2pvcc2 - c 2 )  ( V  + v 1) 

x ,t L s Y,Y z,z 

? Sin 0 (Sin 6 + Cos 4 tan 4) {T - p c 2 ( v  + V  ) I  
XY ,t s X,Y Y,X 

These are the gene& compatibility equations fo r  a t b e - s p a t i &  

d h n s i o n d l  dynamic e las t i c i ty  problem. Specific equations can be 

obtained by choosing values of 9 and 6, and specifying c t o  be c or 
L 

CONCLUSIONS 

The characteristic slope equations and corresponding compcz"cibility 

equations have been developed i n  Cartesian coordinates f o r  the t h ~ e  

dimensional d y n h c  e las t i c i ty  problem. It is verified that two types 

of waves are present, nanely, longitudinal and shear waves. 
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